Prototype Learning with Attributed Relational Graphs

نویسندگان

  • Pasquale Foggia
  • Roberto Genna
  • Mario Vento
چکیده

An algorithm for learning structural patterns given in terms of Attributed Relational Graphs (ARG’s) is presented. The algorithm, based on inductive learning methodologies, produces general and coherent prototypes in terms of Generalized Attributed Relational Graphs (GARG’s), which can be easily interpreted and manipulated. The learning process is defined in terms of inference operations especially devised for ARG’s, as graph generalization and graph specialization, making so possible the reduction of both the computational cost and the memory requirement of the learning process. Experimental results are presented and discussed with reference to a structural method for recognizing characters extracted from ETL database.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial pattern discovery by learning a probabilistic parametric model from multiple attributed relational graphs

This paper presents the methodology and theory for automatic spatial pattern discovery from multiple attributed relational graph samples. The spatial pattern is modelled as a mixture of probabilistic parametric attributed relational graphs. A statistic learning procedure is designed to learn the parameters of the spatial pattern model from the attributed relational graph samples. The learning p...

متن کامل

Deep Feature Learning for Graphs

This paper presents a general graph representation learning framework called DeepGL for learning deep node and edge representations from large (attributed) graphs. In particular, DeepGL begins by deriving a set of base features (e.g., graphlet features) and automatically learns a multi-layered hierarchical graph representation where each successive layer leverages the output from the previous l...

متن کامل

Scene Analysis with Structural Prototypes for Content-Based Image Retrieval in Medicine

The content of medical images can often be described as a composition of relevant objects with distinct relationships. Each single object can then be represented as a graph node, and local features of the objects are associated as node attributes, e.g. the centroid coordinates. The relations between these objects are represented as graph edges with annotated relational features, e.g. their rela...

متن کامل

Relational Learning and Feature Extraction by Querying over Heterogeneous Information Networks

Many real world systems need to operate on heterogeneous information networks that consist of numerous interacting components of different types. Examples include systems that perform data analysis on biological information networks; social networks; and information extraction systems processing unstructured data to convert raw text to knowledge graphs. Many previous works describe specialized ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000